Zeitschriftenaufsatz
|
2017
A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation
Autor:in
Kollmann, Karoline; Warsch, Wolfgang; Gonzalez-Arias, Carlos; Nice, F.; Avezov, Edward; Milburn, Julianna; Li, Juan; Dimitropoulou, D; Biddie, S.; Wang, Ming; Poynton, Edward; Colzani, M. T.; Tijssen, M.; Anand, Shubha; McDermott, Ultan; huntly, brian; Green, Tony
Publikationen als Autor:in / Herausgeber:in der Vetmeduni
Journal
Abstrakt
Most myeloproliferative neoplasm (MPN) patients lacking JAK2 mutations harbour somatic CALR mutations that are thought to activate cytokine signalling although the mechanism is unclear. To identify kinases important for survival of CALR-mutant cells, we developed a novel strategy (KISMET) that utilizes the full range of kinase selectivity data available from each inhibitor and thus takes advantage of off-target noise that limits conventional small-interfering RNA or inhibitor screens. KISMET successfully identified known essential kinases in haematopoietic and non-haematopoietic cell lines and identified the mitogen activated protein kinase (MAPK) pathway as required for growth of the CALR-mutated MARIMO cells. Expression of mutant CALR in murine or human haematopoietic cell lines was accompanied by myeloproliferative leukemia protein (MPL)-dependent activation of MAPK signalling, and MPN patients with CALR mutations showed increased MAPK activity in CD34 cells, platelets and megakaryocytes. Although CALR mutations resulted in protein instability and proteosomal degradation, mutant CALR was able to enhance megakaryopoiesis and pro-platelet production from human CD34(+) progenitors. These data link aberrant MAPK activation to the MPN phenotype and identify it as a potential therapeutic target in CALR-mutant positive MPNs.
Schlagwörter
Antigens, CD34metabolism; Calreticulinantagonists & inhibitorsgenetics; Cell Differentiation; Cell Line; Drug Discovery; Ectopic Gene Expressiondrug effects; Fetal Bloodcytology; Humans; Janus Kinase 2antagonists & inhibitorsgenetics; Megakaryocytescytologydrug effectsmetabolism; Mitogen-Activated Protein Kinasesmetabolism; Mutation; Proteasome Endopeptidase Complexmetabolism; Protein Kinase Inhibitorspharmacology; Protein Stability; Proto-Oncogene Proteins B-rafgeneticsmetabolism; Signal Transductiondrug effects; Thrombopoiesisgenetics; ras Proteinsgeneticsmetabolism
Dokumententyp
Originalarbeit
ISSN/eISSN
0887-6924 - 1476-5551
WoS ID
PubMed ID